Babbaafamaa
Herrega keessatti (keessattuu shallaggoo addummaa(differential calculus) keessatti), babbaafamni karaa saffisa jijjiirama battalaa agarsiisuudha: jechuunis, hamma warroomii tokko qabxii kenname tokko irratti jijjiiramaa jiru. warroomiiwwan lakkoofsota dhugaa irratti socho'aniif, innis dhundhula sarara moxobaa(tangent) tuqaa caattoo irratti argamuuti. Babbaafamni yeroo baayyee akka ("dy irraa dx" , jechuun garaagarummaa y irraa garaagarummaa x tiin hirama). d jijjiiramaa miti, kanaaf haqamuu hin danda'u. Mallattoon beekamaan kan biraan immoo —babbaafamni warroomii qabxii irratti, yeroo baay'ee " 'n kophxii ".
Hiikkaa Babbaafamaa
gulaaliBabbaafamni y x ilaalchisee jijjiirama y jijjiirama x irratti, akka fageenya gidduu jiruutti ibsama fi daangaa hin qabne xiqqaa ta’a ( infinitesimal ). Jecha herregaatiin,
Kunis, akkuma fageenyi tuqaa x lamaan (h) gidduu jiru zeerootti dhihaachaa deemuun, dhundhulli sarara isaan gidduu jiru sarara tangeentii fakkaachuutti dhihaata.
Babbaafama warroomiiwwanii
gulaaliWarroommii sararaawaa
gulaaliBabbaafamni warroomii sararaawaa (faankshiniiwwan unkee ibsamoota lameetaa(quadratic) ykn ol’aanaa kan hin qabne) dhaabbataa dha. Kunis, babbaafama bakka tokko caattoo irratti argamu bakka biraa irrattis akkuma jirutti ta’a.
Yeroo jijjiiramaan hirkataan kallattiin gatii fudhata ( ), dhundhulli sararichaa bakka hundatti 1 waan ta’eef ejjennoo sun eessa akka jiru osoo hin ilaalidha.
warroomiiwwan aangoo
gulaaliwarroomiiwwan aangoo (bifa ) warroomiiwwan sararaawaa irraa adda ta’ee amala qabu, sababiin isaas aangessoon isaanii fi dhundhulli isaanii garaagarummaa qaba.
warroomiiwwan aangoo, akka waliigalaatti, seera akka . Kunis, yoo a lakkoofsi 6 kennine, egaa
Fakkeenyi biraa, kan hin mul’anne, warroomiiti . Kun bu’uuraan walfakkaataadha, sababiin isaas 1/x eksaapooneentota fayyadamuuf salphaa ta’uu danda’a:
Dabalataanis, hundeewwan jijjiiramuun eksaapooneentoota firaakshinii fayyadamuu ni danda’u, bakka bu’aan isaanii argamuu danda’utti:
warroomiiwwan eksaapooneenshiyaalii
gulaaliwarroomiin eksaapooneenshiyaalii bifa , eessa fi dhaabbataa ta’anii fi dalagaa kan . Garaagarummaan eksaapooneenshiyaalii fi polinoomii gidduu jiru kan polinoomii keessa jiruudha humna tokko tokkotti kan olkaafame yoo ta’u, eksaapooneenshiyaalii keessatti garuu aangoo keessa jira.
Fakkeenya 1
gulaali
Fakkeenya 2
gulaaliArgachuu .
Kanaaf,
warroomiiwwan loogaritmii
gulaaliBabbaafamaa logaarizimii fuggisoo :
- .
Fakkeenyaaf, . . Kunis gara (amaloota loogaritmii )tti hir’ifamuu danda’a:
Loogaritmiin 5 dhaabbataa waan ta’eef, bu’aan isaa 0 dha. Derivative kan dha . Kanaaf,
Derivaatiiwwan loogaritmii beezii e keessa hin jirreef, kan akka , kun gara:
warroomiiwwan Rogkofa
gulaali.
Amaloota babbaafama (derivatives)
gulaaliDerivaatiiwwan bakka bulfamuu danda’anitti kutaalee xixiqqootti qoodamuu danda’u (amaloota dalagaa armaan olii keessaa tokko qofa waan qabaniif). Fakkeenyaaf, akka armaan gadiitti caccabuu danda’a:
FAAYIDAALEE DARIVEETIIVII
gulaaliGatiilee Fiixee
gulaaliAkeekkoo 1 (Akeekkoo Gatiilee Fiixee) Yoo warroomiin 𝑓 intarvaalii cufaa [𝑎, 𝑏] irraatti ittifufaa ta'e, 𝑓'n [𝑎, 𝑏] irratti gatii guddaa fi gatii xiqqaa ni qabaata. Akeekkoo kana mirkaneessuun sadarkaa koorsii kanaa ol waan ta'eef, osoo hin mirkaneessin ittifayyadamna.
Tiiramii 2 Mee warroomiin 𝑓 intarvaalii cufaa [𝑎, 𝑏] irratti ittifufaa fi intarvaalii banaa (𝑎, 𝑏) irratti dariveetivawaa haa ta'u. Yoo 𝑓 'n 𝑐 ∈ (𝑎, 𝑏) irratti gatii fiixee qabaate, 𝑓 ′ (𝑐) = 0 ta'a.
Mirkana: Mee 𝑓 'n 𝑐 irratti gatii guddaa ni qaba haa jennu.
Tiiramii 3 (Tiiramii 'Rolle') Mee warroomiin 𝑓 intarvaalii cufaa [𝑎, 𝑏] irratti ittifufaa fi intarvaalii banaa (𝑎, 𝑏) irratti dariveetivawaa haa ta'u. Yoo 𝑓(𝑎) = 𝑓(𝑏) ta'e, lakkoofsi 𝑐 ∈ (𝑎, 𝑏) kan 𝑓 ′ (𝑐) = 0 taasisu ni jiraata.
Mirkana: 1. Mee 𝑓 'n [𝑎, 𝑏] irratti dhaabbataa haa ta'u. ⇒ 𝑓 ′ (𝑥) = 0 ∀𝑥 ∈ [𝑎, 𝑏]
2. Yoo 𝑓 'n dhaabbataa ta'uu baate, [𝑎, 𝑏] irratti ittifufaa waan ta'ee Tiiramii 3.1 'n gatiilee fiixee ni qabaata.
⇒ ∃𝑐 ∈ (𝑎, 𝑏) kan 𝑓(𝑥) ≤ 𝑓(𝑐)∀𝑥 ∈ [𝑎, 𝑏] taasisu.
⇒ 𝑓 ′ (𝑐) = 0 (Tiiramii 3.2' n)
Tiiramii 3.4 (Tiiramii Gatii Qixxoomaa) Mee warroomiin 𝑓 intarvaalii cufaa [𝑎, 𝑏] irratti ittifufaa fi intarvaalii banaa (𝑎, 𝑏) irratti dariveetivawaa haa ta'u. Lakkoofsi 𝑐 ∈ (𝑎, 𝑏) kan 𝑓 ′ (𝑐) = 𝑓(𝑏)−𝑓(𝑎) 𝑏−𝑎 dhugoomsu yoo xinnate tokko ni jiraata. M
irkana :Tiiramii 3.3tti fayyadamuun mirkaneessi.
Tiiramii 3.5 (Yaalii dariveetivii I) Mee 𝑓 'n intarvaalii 𝐼 irratti ittifufaa fi 𝑐 ∈ 𝐼 haa ta'an.
I. Yoo 𝑓 ′ 'n 𝑐 irratti poozatiivii irraa gara negaatiiviitti jijjiirama ta'e, 𝑓(𝑐) 'n 𝐼 irratti gatii guddaa naannoo 𝑓 ta'a
II. Yoo 𝑓 ′ 'n 𝑐 irratti negaatiivii irraa gara poozatiiviitti jijjiirama ta'e, 𝑓(𝑐) 'n 𝐼 irratti xiqqaa naannoo 𝑓 ta'a.
Fakkeenya 1.Yoo ta'e, intarvaalota 𝑓 'n irratti gatiilee fiixee horatu adda baasuun ibsi,
kanuma irraa 𝑓 ′ (𝑥) ≥ 0 ∀𝑥 ∈ (−∞, −1] ∪ [1, ∞) fi 𝑓 ′ (𝑥) ≤ 0 ∀𝑥 ∈ [−1, 0) ∪ (0, 1] yoo ta'u, 𝑓 ′ 'n −1 irratti poozatiivii irraa gara negaatiiviittii fi 1 irratti negaatiivii irraa gara poozatiiviitti jijjirame. Kanaafuu 𝑓(−1) = −4 gatii guddaa naannoo fi 𝑓(1) = 4 gatii xiqqaa naannoo 𝑓 ta'u